화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.128, No.21, 6965-6974, 2006
Stepwise formation and characterization of covalently linked multiporphyrin-imide architectures on Si(100)
A major challenge in molecular electronics and related fields entails the fabrication of elaborate molecular architectures on electroactive surfaces to yield hybrid molecular/semiconductor systems. A method has been developed for the stepwise synthesis of oligomers of porphyrins linked covalently via imide units. A triallyl-porphyrin bearing an amino group serves as the base unit on Si(100), and the alternating use of a dianhydride (3,3', 4,4'-biphenyltetracarboxylic dianhydride) and a porphyrin-diamine for reaction enables the rapid and simple buildup of oligomers composed of 2-5 porphyrins. The properties of these porphyrin "multad" films on Si(100) were interrogated using a variety of techniques. The charge densities of the redoxactive porphyrin oligomers were determined via electrochemical methods. The stepwise growth was evaluated in detail via Fourier transform infrared (FTIR) spectroscopy and by selected X-ray photoelectron spectroscopic (XPS) studies. The morphology was probed via AFM methods. Finally, the thickness was evaluated by using a combination of ellipsometry and AFM height profiling, accompanied by selected XPS studies. Collectively, these studies demonstrate that high charge density, ultrathin, multiporphyrin films of relatively well-controlled thickness can be grown in a stepwise fashion using the imide-forming reaction. The increased charge densities afforded by the porphyrin multads may prove important for the fabrication of molecular-based information-storage devices. This bottom-up process for construction of surface-tethered molecular architectures complements the top-down lithographic approach for construction of functional devices with nanoscale dimensions.