화학공학소재연구정보센터
Inorganic Chemistry, Vol.45, No.14, 5635-5640, 2006
Synthesis and characterization of novel "3+2" oxorhenium complexes, ReO[SNO][NN]
The present paper deals with the synthesis and structural characterization of novel neutral oxorhenium(V) complexes of the general formula ReO[SNO][NN]. The simultaneous action of the tridentate SNO ligand, N-(2-mercaptoacetyl)glycine (1), and the bidentate NN ligand, N-phenylpyridine-2-aldimine (2), on ReOCl3(PPh3)(2) leads to the formation of two isomers 4a and 4b of the general formula ReO[SNO][NN], as a result of the different orientations of the NN ligand. In both cases, the SNO donor atoms of the tridentate ligand occupy the three positions in the equatorial plane of the distorted octahedron, whereas the oxo group is always directed toward one of the apical positions. In the first isomer, 4a, the imino nitrogen of the NN ligand occupies the fourth equatorial position and the pyridine type nitrogen is directed trans to the oxo group, while in the second isomer, 4b, the imino nitrogen of the NN ligand occupies the apical position trans to the oxo group and the pyridine type nitrogen completes the equatorial plane of the distorted octahedron. The [SNO][NN] mixed-ligand system was applied in the synthesis of the oxorhenium complex 5 in which the 1-(2-methoxyphenyl) piperazine moiety, a fragment of the true 5-HT1A antagonist WAY 100635, has been incorporated in the NN bidentate ligand (NN is N-{3-[4-(2-methoxyphenyl)piperazin-1-yl]propyl}pyridine-2-aldimine). In this case, high-performance liquid chromatography and NMR showed the existence of one isomer, 5, in which the pyridine nitrogen is trans to the oxo core, as demonstrated by crystal structure analysis.