화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.227, No.2, 495-504, 2000
The application of diffusing-wave spectroscopy to monitor the phase behavior of emulsion-polysaccharide systems
Droplet aggregation is an important cause of instability in emulsions because it may, on one hand, lead to an increased creaming rate, resulting in fast separation of a concentrated emulsion phase (creamed layer). On the other hand, it may also lead to the formation of a stabilizing, droplet-based network. Early detection of instability is often difficult due to the high turbidity and viscosity of more concentrated food emulsions. The applicability of diffusing-wave spectroscopy (DWS) for monitoring droplet aggregation and creaming was studied using a model system consisting of a protein-stabilized emulsion, to which a soluble polymer ("thickener") was added. This addition leads to an increased solvent viscosity and may induce droplet aggregation. In addition, the redistribution process of emulsion droplets in aggregating concentrated emulsions was directly observed by confocal scanning laser microscopy (CSLM). By DWS the decrease of the droplet mobility caused by the viscosity increase of the continuous phase could be separated from the effect of droplet aggregation. Moreover, a distinction could be made between aggregation, leading to increased creaming rates and that leading to the formation of a stabilizing droplet network. The potential of DWS for in situ measurement of the stability of concentrated emulsions is discussed.