Journal of Physical Chemistry B, Vol.110, No.24, 11986-11990, 2006
Microfabrication using elastomeric stamp deformation
Elastomeric stamp deformation has been utilized for the contact printing (CP) of self-assembled monolayers (SAMs) and, more recently, polymers and proteins. Here, we take advantage of this well-studied phenomenon to fabricate a series of new metal thin-film patterns not present on the original stamp. The rounded patterns are of nanoscale thickness, long-range order, and are created from elastomeric stamps with only straight-edged features. The metal was printed onto the surface of an alpha,omega-alkanedithiol self-assembled monolayer (SAM). The new shapes are controlled by a combination of stamp geometry design and the application of external pressure. Previously published rules on stamp deformation for contact printing of SAMs are invalid because the coating is instead a thin-metal film. This method represents a new pathway to micropatterning metal thin films, leading to shapes with higher complexity than the original lithographic masters.