Journal of Physical Chemistry B, Vol.110, No.25, 12446-12450, 2006
Singlet energy migration along an alternating block copolymer of oligothiophene and oligosilylene in solution
The singlet excited-state properties of the block copolymers of oligothiophene and oligosilylene in solution were investigated with several fast spectroscopic methods. Time-resolved fluorescence measurements at room temperature and in a glassy matrix revealed that the singlet excited states of the block copolymers are deactivated accompanying structural changes of the polymer. It became clear from the transient absorption spectroscopy that the absorption peak of the singlet excited state shifted to the longer wavelength side compared to that of the corresponding oligothiophenes because of the sigma-pi conjugation of the oligothiophene and oligosilylene. The intersystem crossing process generating the triplet excited state was also revealed by the transient absorption spectroscopy. Energy migration along the polymer chain was revealed by the fluorescence anisotropy measurements. The time constant for the energy migration became faster as the size of the oligothiophene in the polymer repeating unit became shorter. From comparison with the Forster theory, the energy migration process was attributed to an incoherent hopping mechanism.