Journal of Physical Chemistry B, Vol.110, No.25, 12632-12639, 2006
Dissociative electron transfer in donor-peptide-acceptor systems: Results for kinetic parameters from a density functional/polarizable continuum model
The main structural and electronic factors playing a role in intramolecular dissociative electron transfer of a simple donor-peptide-acceptor (D-peptide-A) model have been investigated by an integrated computational protocol based on the density functional theory, its time-dependent extension, and the polarizable continuum model. Our results allow us to elucidate the electronic states involved in the process and how they are perturbed by the orientation of the donor and the acceptor with respect to the peptide chain and by the presence of the solvent. We also report a semiquantitative estimation of the rate constant governing electron transfer obtained by a direct quantum mechanical evaluation of all the terms entering the kinetic expressions based on the Marcus theory and its extensions.