화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.26, 12948-12953, 2006
Solvothermal synthesis and photoluminescent properties of ZnS/cyclohexylamine: Inorganic-organic hybrid semiconductor nanowires
An inorganic-organic hybrid semiconductor, ZnS/CHA (CHA = cyclohexylamine) nanocomposites was successfully synthesized via a solvothermal method using CHA as solvent, which yielded uniform and ultralong nanowires with widths of 100-1000 nm and lengths of 5-20 mu m. Changing the reaction conditions could alter the morphology and optical properties of the nanocomposites. The periodic layer subnanometer structures were identified by high-resolution transmission electron microscopy (HR-TEM) images, with thickness of similar to 2 nm. The composites exhibited a very large blue-shift in their optical absorption edge as well as an exciton excitation band due to a strong quantum confinement effect caused by the internal subnanometer-scale structures. The pure hexagonal wurtzite ZnS nanowires were also obtained by extracting the ZnS/CHA nanocomposites with dimethyl formamide (DMF). In addition, the luminescent properties of exciton and defect-related transitions in different samples of ZnS/CHA were discussed in detail.