화학공학소재연구정보센터
Langmuir, Vol.22, No.15, 6549-6554, 2006
Growth and analysis of octadecylsiloxane monolayers on Al2O3(0001)
On solvent-cleaned and piranha-etched single-crystal Al2O3(0001) surfaces, uniform, robust, self-assembled monolayers of octadecylsiloxane (ODS) are formed by 48 h exposure to a solution containing octadecyltrichlorosilane (OTS) in an anhydrous atmosphere. X-ray photoelectron spectroscopy, atomic force microscopy, ellipsometry, and water contact angle measurements confirm the presence of a uniform, complete monolayer. Reducing the exposure time or omitting the piranha-etch leads to much less uniform coverage. The ODS monolayers are stable when stored in ambient atmospheres for month-long periods. Thermal desorption in a vacuum environment (10(-9) Torr) shows the ODS monolayer is thermally stable up to at least 420 K. When heated in 200 mTorr of flowing forming gas (N-2-10% H-2) for 1 h at 520 K, slow loss of ODS was indicated. A schematic model is proposed which involves island nucleation by covalent bonding of OTS to surface hydroxyl groups followed by growth through the addition of mobile ODS species.