Macromolecules, Vol.39, No.13, 4418-4424, 2006
Electrochemical copolymerization and spectroelectrochemical characterization of 3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene-methanol copolymers on indium-tin oxide
This work describes the electrochemical copolymerization and spectroelectrochemical characterization of 3,4-ethylenedioxythiophene (EDOT) with a commonly used EDOT derivative: 2,3-dihydrothieno[3,4b]-1,4-dioxyn-2-yl methanol (EDTM), on indium-tin oxide (ITO) electrodes, as a function of the EDTM/EDOT comonomer feed ratio. The potential of initial polymerization and the degree of optical contrast between reduced and oxidized states increased steadily with increasing proportions of EDTM. Reactivity ratios were determined by spectroscopic characterization of the copolymer film and by monitoring the depletion of monomer from the starting solution by liquid chromatography, following the formation of relatively thick PEDOT/PEDTM films. Average reactivity ratios of 1.5 +/- 0.2 and 0.4 +/- 0.3 were obtained for EDOT and EDTM, respectively, demonstrating preferential deposition of EDOT on ITO electrode surfaces. Significant differences were noted at low and high degrees of conversion, indicating changes in copolymer composition with film thickness. These results have real significance for the characterization of electron-transfer rates for the first monolayer of PEDOT/ PEDTM on ITO, determined by a new mode of potential-modulated attenuated total reflectance spectroelectrochemistry.(1).