Chemical Engineering Science, Vol.61, No.16, 5404-5420, 2006
Incremental identification of kinetic models for homogeneous reaction systems
An incremental approach for the identification of stoichiometries and kinetics of complex homogeneous reaction systems is presented in this paper. The identification problem is decomposed into a sequence of subproblems. First, the reaction fluxes for the various species are estimated on the basis of balance equations and concentration measurements stemming from isothermal experiments. This task represents an ill-posed inverse problem that requires appropriate regularization. Using target factor analysis, suitable reaction stoichiometries can then be identified. In a further step, the reaction rates are estimated without postulating a kinetic structure. Finally, the kinetic laws, i.e., the dependencies of the reaction rates on concentrations, are constructed by selecting the best model structure from a set of model candidates. This incremental approach is shown to be both efficient and flexible for utilizing the available process knowledge. The methodology is illustrated on the industrially relevant acetoacetylation of pyrrole with diketene. (c) 2006 Elsevier Ltd. All rights reserved.