화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.28, 13819-13828, 2006
Inclusion complexes between beta-cyclodextrin and a gemini surfactant in aqueous solution: An NMR study
H-1 NMR spectra, diffusion-ordered NMR (DOSY), and 2D rotating-frame Overhauser enhancement spectroscopy (ROESY) experiments for aqueous solutions at 298 K containing the gemini surfactant, bis (dodecyl dimethylammonium) diethyl ether dibromide (12-EO1-12), in the absence and presence of beta-cyclodextrin (beta-CD) were used to characterize the surfactant and to determine the effects of the complexation in the micellization. For the binary system, the critical micelle concentration (cmc), the aggregation number, the stepwise micellization constant, and the size of the monomer have been obtained by studying the dependence of the chemical shifts and the self-diffusion coefficients with the concentration of surfactant. For the ternary system, the analysis of the 1H NMR spectra and the self-diffusion coefficients reveal the formation of complexes of 1:1 and 2:1 stoichiometry (beta-CD:gemini), with a calculated stability constant for the second binding step higher than that of the first. The values of the hydrodynamic radii of the complexes were obtained from the calculated diffusion coefficients. The presence of beta-CD modifies the cmc in an extension that indicates mainly the formation of a 2: 1 complex. The analysis of the chemical shifts of the surfactant indicates the nonparticipation of the complexes into the micelles. ROE enhancements depend substantially on the amount of the macrocycle added and therefore on the stoichiometry; at low concentrations of beta-CD, one of the hydrocarbon chains binds favorably with the cavity whereas the other interacts with the outer face. By contrast, at higher concentrations of beta-CD, the two hydrocarbon tails are included in two different macrocycles.