화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.29, 14074-14077, 2006
Sensing behaviors of polypyrrole nanotubes prepared in reverse microemulsions: Effects of transducer size and transduction mechanism
Polypyrrole (PPy) nanotubes with different diameters were readily fabricated using cylindrical micelle templates in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse microemulsions. Interestingly, Raman spectroscopy and ultraviolet (UV)-visible spectroscopy revealed that the PPy nanotubes with smaller diameters had a more extended conjugation length as well as a higher oxidation level. The PPy nanotubes were deposited onto a microelectrode array and were exposed to chemical vapor and electromagnetic radiation: typically, NH3 vapor and UV light were chosen. The electrical response of PPy nanotubes to two different kinds of analytes was strongly dependent on their diameters. Moreover, since the small dimensions of PPy nanotubes facilitated the interaction between nanotubes and analytes, the PPy nanotube sensors showed conspicuously enhanced responses compared with conventional PPy.