화학공학소재연구정보센터
Rheologica Acta, Vol.45, No.5, 591-600, 2006
Superposition principles for small amplitude oscillatory shearing of nematic mesophases
The linear viscoelasticty of Leslie-Ericksen monodomain liquid crystals subjected to a bend distortion through a small amplitude oscillatory shear flow driven by harmonic wall stress is analyzed, using numerical and asymptotic methods. The viscoelastic material functions were derived using a new scaling approach that extracts the material parameters that control superposition. Small and high frequency superposition schemes for linear viscoleasticity were derived. The schemes were successfully applied to collapse the predicted loss and storage linear viscoelastic moduli of seven experimental data sets. Comparisons between different shear flows (simple shear and capillary Poiseuille) and different director distortion modes (splay and bend) shows that the superposition schemes are applicable to shear flows in any single director distortion mode.