화학공학소재연구정보센터
Journal of Materials Science, Vol.41, No.14, 4604-4610, 2006
Micro-mechanical theory of macroscopic stress-corrosion cracking in unidirectional GFRP
A micro-mechanical theory of macroscopic stress-corrosion cracking in a unidirectional glass fibre-reinforced polymer composite is proposed. It is based on the premise that under tensile loading, the time-dependent failure of the composite is controlled by the initiation and growth of a crack from a pre-existing inherent surface flaw in a glass fibre. A physical model is constructed and an equation is derived for the macroscopic crack growth rate as a function of the apparent crack tip stress intensity factor for mode I. Emphasis is placed on the significance of the size of inherent surface flaw and the existence of matrix crack bridging in the crack wake. There exists a threshold value of the stress intensity factor below which matrix cracking does not occur. For the limiting case, where the glass fibre is free of inherent surface flaws and matrix crack bridging is negligible, the relationship between the macroscopic crack growth rate and the apparent crack tip stress intensity factor is given by a simple power law to the power of two.