Journal of Physical Chemistry B, Vol.110, No.31, 15471-15477, 2006
Experimental and theoretical investigation of the stability of Pt-3d-Pt(111) bimetallic surfaces under oxygen environment
The stability of the Pt-3d-Pt(111) (3d=Ti, V, Cr, Mn, Fe, Co, or Ni) bimetallic surface structures in the presence of adsorbed oxygen has been investigated by means of density functional theory (DFT). The dissociative binding energies of oxygen on Pt-3d-Pt(111) (i. e., subsurface 3d monolayer) and 3d-Pt-Pt(111) (i. e., surface 3d monolayer) were calculated. All of the Pt-3d-Pt(111) surfaces were found to have weaker oxygen binding energies than pure Pt(111) whereas all of the 3d-Pt-Pt(111) surfaces were found to have stronger oxygen binding energies than pure Pt(111). The total heat of reaction was calculated for the segregation for 3d metal atoms from Pt-3d-Pt(111) to 3d-Pt-Pt(111) when exposed to a half monolayer of oxygen. All of the Pt-3d-Pt(111) subsurface structures were predicted to be thermodynamically unstable with adsorbed oxygen. In addition, the segregation of subsurface Ni and Co to the surfaces of Pt-Ni-Pt(111) and Pt-Co-Pt(111) was investigated experimentally using Auger electron spectroscopy (AES) and high-resolution electron energy loss spectroscopy (HREELS). AES and HREELS confirmed the trend predicted by DFT modeling and showed that both the Pt-Ni-Pt(111) and Pt-Co-Pt(111) surface structures were unstable in the presence of adsorbed oxygen. The activation barrier of the segregation of surbsurface Ni and Co atoms was determined to be 15 +/- 2 and 7 +/- 1 kcal/mol, respectively. These results are further discussed for their implication in the design and selection of cathode bimetallic electrocatalysts for the oxygen reduction reaction (ORR) in polymer electrode membrane (PEM) fuel cells.