화학공학소재연구정보센터
Powder Technology, Vol.166, No.2, 100-112, 2006
Numerical simulation of breakage of two-dimensional polygon-shaped particles using discrete element method
Using DEM (Discrete Element Method), a model is presented to simulate the breakage of two-dimensional polygon-shaped particles. In this model each uniform (uncracked) particle is replaced with smaller inter-connected sub-particles which are bonded with each other. If the bond between these sub-particles breaks, breakage will happen. With the help of this model, it is possible to study the influence of particle breakage on macro and micro mechanical parameters. In this simulation, the evolution of microstructure in granular assemblies can be seen by tracing of coordination number during the shear process. Also variation of contact normal, normal force and tangential force anisotropy can be tracked. To do so, two series of biaxial test simulations (breakage is enabled and disabled) are conducted on assemblies of two-dimensional polygon-shaped particles and the results are compared. The results are presented in terms of macro and micro mechanical behavior for different confining pressures. (c) 2006 Elsevier B.V. All rights reserved.