AAPG Bulletin, Vol.90, No.9, 1309-1336, 2006
Strangraphy and sedimentology of the Middle Ordovician Hawaz Formation (Murzuq Basin, Libya)
The Middle Ordovician Hawaz Formation is a 200-m (660-ft)-thick succession made up of fine-grained quartzarenites displaying a variable degree of bioturbation. It records the deposition in a large-scale, low-gradient estuary, which was partially controlled by tectonic extension. The upper boundary of the formation is marked by two erosion surfaces (unconformities U I and U2), related to the Late Ordovician glaciation. The U1 and U2 erosion surfaces generated a pronounced paleotopography that controlled the deposition of the Upper Ordovician sequences. Tectonism influenced the paleogeography, although faults were unimportant from the point of view of sedimentary thickness. Tectonic subsidence was moderate, and accumulation rates were low. Physiography favored tidal power, especially during transgressive episodes, when the coastal embayment was flooded. We defined I I lithofacies, forming 6 facies associations. These associations are subtidal sandstones; storm-reworked, shoreface sandstones; shoreface-to-beach sandstones; channel-sandstone bodies; nearshore to inner-platform sandstones; and K-bentonites. Trace-fossil assemblages match Skolithos and Cruziana archetypal ichnofacies. On the basis of the dominant facies associations and ichnofacies, we divided the formation into three informal units, from base to top: HW.1, HW.2 and HW.3. Periodically, volcanic ash was supplied to the basin from distal eruptive centers and was preserved as thin beds of K-bentonite interstratified with the shoreface sandstones, but not with the tidal-dominated sandstones. We divided the Hawaz Formation into five third-order depositional sequences. Lowstand deposits were not identified. The lower boundaries of transgressive systems tracts are tidal ravinement surfaces or sequence boundaries, whereas the upper boundaries are flooding surfaces. The transgressive systems tracts are constituted by early transgressive tidal deposits separated by a wave ravinement surface from the late transgressive storm-dominated deposits. Highstand systems tracts consist of bioturbated shoreface-to-beach sandstones, which record seaward, shoreline progradation.