화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.71, No.6, 953-962, 2006
Selenite reduction by a denitrifying culture: batch- and packed-bed reactor studies
Selenite reduction by a bacterial consortium enriched from an oil refinery waste sludge was studied under denitrifying conditions using acetate as the electron donor. Fed-batch studies with nitrate as the primary electron acceptor showed that accumulation of nitrite led to a decrease in the extent of selenite reduction. Also, when nitrite was added as the primary electron acceptor, rapid selenite reduction was observed only after nitrite was significantly depleted from the medium. These results indicate that selenite reduction was inhibited at high nitrite concentrations. In addition to batch experiments, continuous-flow selenite reduction experiments were performed in packed-bed columns using immobilized enrichment cultures. These experiments were carried out in three phases: in phase I, a continuous nitrate feed with different inlet selenite concentration was applied; in phase II, nitrate was fed in a pulsed fashion; and in phase III, nitrate was fed in a continuous mode but at much lower concentrations than the other two phases. During the phase I experiments, little selenite was removed from the influent. However, when the column was operated in the pulse feed strategy (phase 11) or in the continuous mode with low nitrate levels (phase 111), significant quantities of selenium were removed from solution and retained in the immobilization matrix in the column. Thus, immobilized denitrifying cultures can be effective in removing selenium from waste streams, but nitrate-limited operating conditions might be required.