Journal of Applied Polymer Science, Vol.102, No.3, 2391-2400, 2006
A synergistic effect of nano-TiO2 and graphite on the tribological performance of epoxy matrix composites
The influence of incorporated 300 nm TiO2 (4 vol %), graphite (7 vol %), or combination of both fillers on the tribological performance of an epoxy resin was studied under various sliding load (10-40 N) and velocity conditions (0.2-3.0 m/s). Mechanical measurements indicated that the incorporation of TiO2 significantly enhanced the flexural and impact strength of the neat epoxy and the graphite including epoxy. Tribological tests were conducted with a cylinder-on-flat testing rig. The incorporation of nano-TiO2 significantly improved the wear resistance of the neat epoxy under mild sliding conditions; however, this effect was markedly diminished under severe sliding conditions (high velocity and normal load). Nano-TiO2 reduced the coefficient of friction only under severe sliding conditions. Graphite showed a beneficial effect in reducing the wear rate and the coefficient of friction of the neat epoxy. Compared to the nano-TiO2-filled epoxy, the graphite-filled epoxy showed more stable wear performance with the variation of the sliding conditions, especially the normal load. A synergistic effect was found for the combination of nano-TiO2 and graphite, which led to the lowest wear rate and coefficient of friction under the whole investigated conditions. The synergistic effect was attributed to the effective transfer films formed on sliding pair surfaces and the reinforcing showed a beneficial effect in reducing the wear rate and the coefficient of friction of the neat epoxy. Compared to the nano-TiO2-filled epoxy, the graphite-filled epoxy showed more stable wear performance with the variation of the sliding conditions, especially the normal load. A synergistic effect was found for the combination of nano-TiO2 and graphite, which led to the lowest wear rate and coefficient of friction under the whole investigated conditions. The synergistic effect was attributed to the effective transfer films formed on sliding pair surfaces and the reinforcing effect of the nanoparticles. (c) 2006 Wiley Periodicals, Inc.