Journal of Applied Polymer Science, Vol.102, No.3, 3017-3027, 2006
Graft polymerization of vinyl acetate onto granular starch: Comparison on the potassium persulfate and ceric ammonium nitrate initiated system
This work was undertaken to discuss in depth the vital differences in the morphological development during synthesis, and properties of starch-g-poly(vinyl acetate) copolymers using two different initiators, potassium persulfate (KPS) and ceric ammonium nitrate (CAN). KPS-initiated system gave relatively low values of grafting ratio and grafting efficiency, indicating a great tendency for the formation of poly(vinyl acetate) homopolymer (PVAc). Yet, higher values were seen for the CAN-initiated system. Transmission electron microscope observations indicated a relatively broad distribution of latex particles for the KPS-initiated system. The surface potential of latex particles was about -3.5 mV, which turned out to be insufficient to maintain stability of latex particles. On the other hand, a uniform particle size distribution was found for the CAN-initiated system, as the surface potential of latex particles was 21.5 mV. Moreover, radicals on starch molecules were generated directly through a redox reaction with positively charged ceric ion. The hydrophobic PVAc chains were thus grafted on starch, resulting in an amphiphilic graft copolymer, which provides a sufficient stabilization degree as a role of surfactant to render a relatively uniform distribution of latex particles. The synthesized starch-g-poly(vinyl acetate) copolymers were further converted to starch-g-poly(vinyl alcohol) through saponification, which were subjected to evaluations regarding the biodegradation and cell culture capability. (c) 2006 Wiley Periodicals, Inc.