화학공학소재연구정보센터
Polymer Bulletin, Vol.57, No.6, 813-824, 2006
Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel
In this work, we synthesize a novel protein-based superabsorbent hydrogel and study its swelling behavior. The crosslinking graft copolymerization of acrylic acid (AA) onto the hydrolyzed collagen as a protein backbone was carried out in a homogeneous medium. Potassium persulfate (KPS) as an initiator and N,N'-methylene bisacrylamide (MBA) as a crosslinker were used. The product's structure was established using FTIR spectroscopy. We were systematically optimized the certain variables of the graft copolymerization (i.e. the monomer, the initiator, and the crosslinker concentration) to achieve a hydrogel with maximum swelling capacity. Under this condition, maximum capacity of swelling in distilled water was found to be 920 g/g. Morphology of the optimized sample was examined by scanning electron microscopy (SEM). The swelling ratio in various salt solutions was also determined. Additionally, the swelling of superabsorbing hydrogels was measured in solutions with pH ranged from 1 to 13. The synthesized hydrogel exhibited a pH-responsiveness character so that a swelling-collapsing pulsatile behavior was recorded at pH 2 and 8.