화학공학소재연구정보센터
Energy Policy, Vol.34, No.17, 3165-3172, 2006
Use of artificial neural networks for transport energy demand modeling
The paper illustrates an artificial neural network (ANN) approach based on supervised neural networks for the transport energy demand forecasting using socio-economic and transport related indicators. The ANN transport energy demand model is developed. The actual forecast is obtained using a feed forward neural network, trained with back propagation algorithm. In order to investigate the influence of socio-economic indicators on the transport energy demand, the ANN is analyzed based on gross national product (GNP), population and the total annual average veh-km along with historical energy data available from 1970 to 2001. Comparing model predictions with energy data in testing period performs the model validation. The projections are made with two scenarios. It is obtained that the ANN reflects the fluctuation in historical data for both dependent and independent variables. The results obtained bear out the suitability of the adopted methodology for the transport energy-forecasting problem. (c) 2005 Elsevier Ltd. All rights reserved.