Inorganic Chemistry, Vol.45, No.21, 8648-8654, 2006
Infrared spectra of the M(NO)(n) (M = Sn, Pb; n=1,2) and PbNO- molecules
Reactions of laser-ablated tin and lead atoms with nitric oxide molecules in solid argon and neon have been investigated using matrix-isolation infrared spectroscopy. In the argon experiments, absorptions at 1560.1, 1625.8, and 1486.7 cm(-1) are assigned to the N-O stretching vibrations of the SnNO and Sn( NO) 2 molecules, and absorptions at 1541.9, 1630.0, 1481.8, and 1457.5 cm(-1) are assigned to the N-O stretching vibrations of the PbNO, Pb(NO)(2), and PbNO-molecules on the basis of isotopic shifts and splitting patterns. The present neon experiments only produce neutral tin and lead mononitrosyls. Density functional theory calculations have been performed on these tin and lead nitrosyls. The good agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts substantiates the identification of these nitrosyls from the matrix infrared spectra.