Journal of Physical Chemistry A, Vol.110, No.47, 12743-12751, 2006
Proton-transfer reaction of 4-methyl 2,6-diformyl phenol in cyclodextrin nanocage
We report here on the steady-state and time-resolved fluorescence studies on proton-transfer (PT) reaction of 4-methyl 2,6-diformyl phenol (MFOH) in confined nanocavities in three solvents, dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), and water. Though DMSO and DMF individually interact with MFOH in a similar fashion, their modes of interaction get significantly modified in the presence of cyclodextrin (CD) nanocages. In DMSO, in the ground state, the solvated molecular anion of MFOH forms 1:1 inclusion complex with beta- or gamma-CD and attains greater stability compared to the normal form. In DMF, the solvated molecular anion gets converted to the H-bonded complex within the CD cavity resulting in a 50-nm blue shift in the absorption spectra. In the excited state, the anionic species gets more stabilized in DMSO while in DMF it is significantly destabilized in the presence of CDs. However, in case of water, MFOH gets trapped inside the water cages so that the CDs fail to complex with it effectively. There are also no changes in the excited-state lifetimes in water in the presence of CDs, but in case of DMSO and DMF, because of restricted rotation of the formyl group within the CD cavity, the contribution of the shorter lifetime components reduce significantly increasing the larger components. Some theoretical calculations at the AM1 level of approximation have also been carried out to demonstrate how the dipolar nature of the solvent influences excited-state PT in confined media.