화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.41, 20102-20106, 2006
Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates
We have grown a dense array of vertically aligned carbon nanotubes (CNTs) with a controlled distribution of diameters by using block copolymer micelles to form and pattern catalyst particles. The block copolymer poly(styrene-block-acrylic acid) (PS16500-PAA(4500)) was dissolved in toluene to form micelles and then loaded with FeCl3. The metal-loaded micelles were spin-coated on Si and then thermally treated to remove the polymer. Using this process, we produced surfaces patterned with iron oxide catalyst particles with particle densities ranging from 1400 mu m(-2) to 3800 mu m(-2) and a size distribution of (6.9 +/- 0.8) nm. CNT growth by thermal chemical vapor deposition was then performed on these samples. The low-density catalyst sample produced unaligned, low-density CNTs, whereas the high-density catalyst sample produced vertically aligned, dense CNTs about 10 Am in length. Transmission electron microscopy revealed that the CNTs typically had double and triple graphitic layers with normally distributed diameters of (4.5 +/- 1.1) nm. For comparison, CNTs grown from the standard approach of blanket Fe films had a wide distribution of diameters between 6 and 21 nm. This catalyst preparation approach dramatically sharpens the size distribution of CNTs, compared to standard approaches, and provides a simple means of controlling the areal density of CNTs.