화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.41, 20344-20349, 2006
Single molecule observations of the adsorption sites of methyl isocyanide on Pt(111) by low-temperature scanning tunneling microscopy
Scanning tunneling microscopy (STM) has been used to directly investigate the local structure of methyl isocyanide (CNCH3) adsorbed on Pt(111). At low coverages, CNCH3 is preferentially adsorbed at on-top sites, in agreement with earlier deductions based on vibrational spectroscopy. When dosed at low coverages at 50 K, the molecules tend to adsorb near other CNCH3 molecules with preferred distances of root 3a and root 7a, where a = 2.78 angstrom is the lattice constant of Pt. Annealing the surface to 120 K, however, results in a more uniform separation of the molecules. At higher coverages, the CNCH3 molecules are observed to occupy both on- top and two-fold bridge sites. On the basis of STM image analysis, CNCH3 forms an ordered layer of (2 x 3) periodicity at 0.33 ML. Additional details on the structures of CNCH3 adsorbed at the on- top and two-fold bridge sites are provided by density functional theory (DFT) calculations. At a coverage that saturates the first layer (0.33 ML), the occupation ratio for the on-top and two-fold bridge bonded CNCH3 is 1:1, which is consistent with the results obtained from the combined use of experimental reflection absorption infrared spectroscopy (RAIRS) data and DFT calculations.