Journal of Physical Chemistry B, Vol.110, No.44, 22088-22096, 2006
Synthesis and self-assembly of an amphiphilic poly(phenylene ethynylene) ionomer
We have synthesized a conjugated amphiphilic polyelectrolyte, a poly(phenylene ethynylene) (PPE), and the structurally analogous neutral polymer. The solution-phase aggregation of the uncharged PPE can be reversibly controlled by varying the solvent polarity and concentration, while the charged polymer appears to self-assemble at any concentration in compatible solvents. These conclusions are based on a combination of absorption and photoluminescence spectroscopy and dynamic light scattering. Photoinduced absorption spectroscopy was also employed to investigate interchain electronic communication and the photoinduced production of free charge carriers. The uncharged PPE had a relatively high polaron yield, indicating pi-stacking of adjacent PPE chains and efficient exciton splitting, while the charged polymer did not produce polarons, indicating that the polymers are not pi-stacked despite their tendency to form aggregates. This is most likely due to the presence of the cationic trimethylammonium side chains which force neighboring polymer chains too far apart to achieve effective pi-orbital overlap. Polarons were observed in both polymers after chemical doping with iodine. The ability to control aggregation and interchain electronic communication could be a useful tool in designing nanostructured electronic materials.