Journal of Physical Chemistry B, Vol.110, No.47, 24054-24061, 2006
Bismuth sulfide thin films with low resistivity on self-assembled monolayers
Using self-assembled monolayers (SAMs), highly crystalline bismuth sulfide thin films with low electrical resistivity have been prepared from aqueous solution at low temperature (40-70 degrees C). The nucleation and growth process of Bi2S3 thin films was investigated in detail by XPS, AES, SEM, XRD, SAED, and HRTEM. Solution conditions have marked effects on the microstructure, growth rate, and mechanism of Bi2S3 films. Increased solution temperature resulted in a higher growth rate and a shorter induction time due to a higher supersaturation degree. In the solution of pH 1.12, homogeneous nucleation and the attachment process dominated the formation of Bi2S3 films. In contrast, at pH 0.47 Bi2S3 thin films were formed via heterogeneous nucleation and growth. The c-axial orientation of bismuthinite films was enhanced with the increase of reaction time. By controlling the solution supersaturation and reaction duration, highly crystalline Bi2S3 films composed of closely packed and coalescent crystallites could be realized, whose dark electrical resistivity could reach as low as 0.014 Omega cm without any post-treatment.