화학공학소재연구정보센터
Macromolecular Research, Vol.14, No.6, 646-653, December, 2006
Surface Modification of Magnetites Using Maltotrionic Acid and Folic Acid for Molecular Imaging
E-mail:
Highly hydrophilic, uniform, superparamagnetic and nontoxic maltotrionic acid (MA)-coated magnetite nano-particles (MAM) were prepared and characterized by TEM, DLS, XRD and VSM. MA was used to improve the biocompatibility, monodispersity and non-specific intracellular uptake of nanoparticles. Folic acid (FA) was subsequently conjugated to the MAM to preferentially target KB cells (cancer cells) that have folate receptors expressed on their surfaces and to facilitate nanoparticles in their transit across the cell membrane. Finally, fluorescence isothiocyanate (FITC) was added to the nanoparticles to visualize the nanoparticle internalization into KB cells. After the cells were cultured in a media containing the MAM and MAM-folate conjugate (FAMAM), the results of fluorescence and confocal microscopy showed that both types of nanoparticles were internalized into the cells. Nevertheless, the amount of FAMAM uptake was higher than that of MAM. This result indicated that nanoparticles modified with MA and FA could be used to facilitate the nanoparticle uptake to specific KB cells (cancer cells) for molecular imaging.
  1. Halbreich A, Roger J, Pons JN, Da Silva MF, Hasmonay E, Roudier M, Boynard M, Sestier C, Amri A, Geldwerth D, Fertil B, Bacri JC, Sabolovic D, in Scientific and Clinical Applications of Magnetic Carriers, U. Hafeli, W. Schutt, J. Teller, and M. Zborowski, Eds., Plenum Press, New York, 1997, pp 399-417 (1997)
  2. Halbreich A, Roger J, Pons JN, Geldwerth D, Da Silva MF, Roudier M, Bacri JC, Biochimie, 80, 379 (1998) 
  3. Perrin-Cocon LA, Marche PN, Villiers CL, Biochem. J., 338, 123 (1999)
  4. Koenig SH, Kellar KE, Acad. Radiol., 3, 273 (1996)
  5. Kohler N, Sun C, Wang J, Zhang MQ, Langmuir, 21(19), 8858 (2005)
  6. Roger J, Pons JN, Massart R, Halbreich A, Bacri JC, Eur. Phys. J., Appl. Phys, 5, 321 (1999)
  7. Moroz P, Jones SK, Gray BN, Int. J. Hyperthermia, 18, 267 (2002) 
  8. Bertorelle F, Wilhelm C, Roger J, Gazeau F, Menager C, Cabuil V, Langmuir, 22(12), 5385 (2006)
  9. Zhang Y, Zhang J, J. Colloid Interface Sci., 283(2), 352 (2005)
  10. Sadeghiani N, Barbosa LS, Silva LP, Azevedo RB, Morais PC, Lacava ZGM, J. Magn. Magn. Mater., 289, 466 (2005)
  11. Gupta AK, Gupta M, Biomaterials, 26, 1565 (2005)
  12. Zhang Y, Kohler N, Zhang M, Biomaterials, 23, 1553 (2002)
  13. Lacava LM, Lacava ZGM, Da Silva MF, Silva O, Chaves SB, Azevedo RB, Pelegrini F, Gansau C, Buske N, Sabolovic D, Morais PC, Biophys. J., 80, 2483 (2001)
  14. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P, J. Colloid Interface Sci., 212(2), 474 (1999)
  15. Dietvorst J, Londesborough J, Steensma HY, Yeast, 22, 775 (2005)
  16. Bealin-Kelly F, Kelly CT, Fogarty WM, Biochem. Enzymol., 1, 149 (1990)
  17. Nakano M, Chaen H, Sugimoto T, Miyake T, US Patent 5739024 (1998)
  18. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, Kamen BA, Cancer Res., 52, 3396 (1992)
  19. Dresco PA, Zaitsev VS, Gambino RJ, Chu B, Langmuir, 15(6), 1945 (1999)
  20. Park YK, Park YH, Shin BA, Choi ES, Park YR, Akaike T, J. Control. Release, 69, 97 (2000)
  21. Choi H, Choi SR, Zhou R, Kung HF, Chen IW, Acad. Radiol., 11, 996 (2004) 
  22. Liu X, Liu H, Xing J, Guan Y, Ma Z, Shan G, Yang C, Chaina Particuology, 2, 76 (2003)
  23. Guinier A, X-ray diffraction in crystals, imperfect crystals, and amorphous bodies, Sanfrancisco, Freeman, 1963, p. 378 (1963)
  24. Ma ZY, Guan YP, Liu HZ, J. Polym. Sci. A: Polym. Chem., 43(15), 3433 (2005)
  25. Shingel KI, Carbohydr. Res., 337, 1445 (2002)
  26. Yamaura M, Camilo RL, Sampaio LC, Macedo MA, Nakamura M, Toma HE, J. Magn. Magn. Mater., 279, 210 (2004)