Korea-Australia Rheology Journal, Vol.18, No.4, 199-207, December, 2006
Nonlinear rheology of polymer melts: a new perspective on finite chain extensibility effects
E-mail:
Measurements by Luap et al. (2005) of elongational viscosity and birefringence of two nearly monodisperse polystyrene melts with molar masses MW of 206,000 g·mol-1 (PS206k) and 465,000 g·mol-1 (PS465k) respectively are reconsidered. At higher elongational stresses, the samples showed clearly deviations from the stress optical rule (SOR). The elongational viscosity data of both melts can be modeled quantitatively by the MSF model of Wagner et al. (2005), which is based on the assumption of a strain-dependent tube diameter and the interchain pressure term of Marrucci and Ianniruberto (2004). The only nonlinear parameter of the model, the tube diameter relaxation time, scales with Mw2. In order to get agreement with the birefringence data, finite chain extensibility effects are taken into account by use of the Pade approximation of the inverse Langevin function, and the interchain pressure term is modified accordingly. Due to a selfregulating limitation of chain stretch by the FENE interchain pressure term, the transient elongational viscosity shows a small dependence on finite extensibility only, while the predicted steady-state elongational viscosity is not affected by non-Gaussian effects in agreement with experimental evidence. However, deviations from the SOR are described quantitatively by the MSF model by taking into account finite chain extensibility, and within the experimental window investigated, deviations from the SOR are predicted to be strain rate, temperature, and molar mass independent for the two nearly monodisperse polystyrene melts in good agreement with experimental data.
- Bach A, Almdal K, Rasmussen HK, Hassager O, Macromolecules, 36(14), 5174 (2003)
- Bird RB, Curtiss CF, Armstrong RC, Hassager O, Dynamics of Polymeric Liquids Vol. 2. Kinetic Theory, Wiley and Sons, USA (1987)
- Cathey CA, Fuller GG, J. Non-Newton. Fluid Mech., 34, 63 (1990)
- Cohen A, Rheol. Acta, 30, 270 (1991)
- Doi M, Edwards SF, J. Chem. Soc.-Faraday Trans., 74, 1802 (1978)
- Doi M, Edwards SF, J. Chem. Soc.-Faraday Trans., 75, 38 (1979)
- Fan BF, Kazmer DO, Bushko WC, Theriault RP, Poslinski AJ, Polym. Eng. Sci., 44(4), 814 (2004)
- Fang JN, Kroger M, Ottinger HC, J. Rheol., 44(6), 1293 (2000)
- Fetters LJ, Lohse DJ, Milner ST, Graessley WW, Macromolecules, 32(20), 6847 (1999)
- Fuller GG, Optical Rheometry of Complex Fluids, Oxford University Press, New York (1995)
- Graessley WW, Polymeric Liquids and Networks: Structure and Properties, Garland Science, New York (2004)
- Hua CC, Schieber JD, J. Chem. Phys., 109(22), 10018 (1998)
- Inoue TH, Okamoto K, Osaki K, Macromolecules, 24, 5670 (1991)
- Janeschitz-Kriegl H, Polymer Melt Rheology and Flow Birefringence, Springer-Verlag, Berlin (1983)
- Kotaka T, Kojima A, Okamoto M, Rheol. Acta, 36(6), 646 (1997)
- Kroger M, Luap C, Muller R, Macromolecules, 30(3), 526 (1997)
- Larson RG, Constitutive Equations for Polymer Melts, Butterworths, Stoneham (1988)
- Lodge AS, Nature, 176, 838 (1955)
- Luap C, Muller C, Schweizer T, Venerus DC, Rheol. Acta, 45(1), 83 (2005)
- Marrucci G, Grizzuti N, Gazz Chim Italiana, 118, 179 (1988)
- Marrucci G, Ianniruberto G, Macromolecules, 37(10), 3934 (2004)
- Matsumoto T, Bogue DC, J. Polym. Sci. B: Polym. Phys., 15, 1663 (1977)
- Mead DW, Larson RG, Macromolecules, 23, 2524 (1990)
- MEAD DW, LEAL LG, Rheol. Acta, 34(4), 339 (1995)
- Mead DW, Larson RG, Doi M, Macromolecules, 31(22), 7895 (1998)
- Muller R, Froelich D, Polymer, 26, 1477 (1985)
- Muller R, Pesce JJ, Polymer, 35(4), 734 (1994)
- Oda K, White JL, Clark ES, Polym. Eng. Sci., 18, 53 (1978)
- Ottinger HC, J. Rheol., 43(6), 1461 (1999)
- Pearson DS, Herbolzheimer E, Grizzuti N, Marrucci G, J. Polym. Sci. B: Polym. Phys., 29, 1589 (1991)
- Pellens L, Vermant J, Mewis J, Macromolecules, 38(5), 1911 (2005)
- Philippoff W, Nature, 178, 811 (1956)
- Rothstein JP, McKinley GH, J. Non-Newton. Fluid Mech., 108(1-3), 275 (2002)
- Sridhar T, Nguyen DA, Fuller GG, J. Non-Newton. Fluid Mech., 90(2-3), 299 (2000)
- Subramanian PR, Galiatsatos V, Makromol. Chem. Macromol. Symp., 76, 233 (1993)
- Talbott WH, Goddard JD, Rheol. Acta, 18, 505 (1979)
- van Meerveld J, J. Non-Newton. Fluid Mech., 123(2-3), 259 (2004)
- Venerus DC, Zhu SH, Ottinger HC, J. Rheol., 43(3), 795 (1999)
- Wagner MH, Rheol. Acta, 29, 594 (1990)
- Wagner MH, Schaeffer J, J. Rheol., 36, 1 (1992)
- Wagner MH, Rubio P, Bastian H, J. Rheol., 45(6), 1387 (2001)
- Wagner MH, Yamaguchi M, Takahashi M, J. Rheol., 47(3), 779 (2003)
- Wagner MH, Kheirandish S, Hassager O, J. Rheol., 49(6), 1317 (2005)
- Wales JLS, The Application of Flow Birefringence to Rheological Studies of Polymer Melts, Delft University Press (1976)
- Winter HH, Mours M, IRIS Developments, http:// rheology.tripod.com/ (2003)
- Ye XN, Sridhar T, Macromolecules, 38(8), 3442 (2005)