화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.18, No.4, 217-224, December, 2006
Radial flow advancement in multi-layered preform for resin transfer molding
E-mail:
Rapid flow advancement without void formation is essential in the liquid composite molding (LCM) such as resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM). A highly permeable layer in multi-layered preform has an important role in improvement of the flow advancement. In this study, a multi-layered preform which consists of three layers is employed. Radial flow experiment is carried out for the multi-layered preform. A new analytic model for advancement of flow front is proposed and effective permeability is defined. The effective permeability for the multi-layered preform is obtained analytically and compared with experimental results. Compaction test is performed to determine the exact fiber volume fraction of each layer in the multi-layered preform. Transverse permeability employed in modeling is measured experimentally unlike the previous studies. Accurate prediction of flow advancement is of great use for saving the processing time and enhancing product properties of the final part.
  1. Adams KL, Rebenfeld L, Text. Res. J., 57, 647 (1987)
  2. Adams KL, Rebenfeld L, Polym. Compos., 12, 179 (1991)
  3. Adams KL, Rebenfeld L, Polym. Compos., 12, 186 (1991)
  4. Adams KL, Russel WB, Rebenfeld L, Int. J. Multiph. Flow, 14, 203 (1988)
  5. Advani SG, Bruschke MV, Parnas RS, Flow and Rheology in Polymer Composites Manufacturing, Elsevier, Amsterdam (1994)
  6. Batch GL, Polym. Compos., 23, 307 (2002)
  7. Bruschke MV, Luce TL, Advani SG, Effective inplaner permeability of multi-layered RTM performs, Proceedings of the 7th Technical Conference of the American Society for Composites, University Park, PA, U.S.A., 103 (1992)
  8. Calado VMA, Advani SG, Compos. Sci. Technol., 56, 519 (1996)
  9. Chae HS, Out-of-plane permeability measurement of braided preform in resin transfer molding, Master Thesis, Seoul National University, Seoul (2004)
  10. Chen B, Chou TW, Compos. Sci. Technol., 59, 1519 (1999)
  11. Chen B, Cheng AHD, Chou TW, Compos. Pt. A-Appl. Sci. Manuf., 32, 701 (2001)
  12. Chen Z, Ye L, Liu H, Compos. Struct., 66, 351 (2004)
  13. Cho YK, Song YS, Kang TJ, Chung K, Youn JR, Fibers and Polymers, 4, 135 (2003)
  14. Diallo ML, Gauvin R, Trochu F, Polym. Compos., 19, 246 (1998)
  15. Endruweit A, Luthy T, Ermanni P, Polym. Compos., 23, 538 (2002)
  16. Jinlian H, Yi L, Xueming S, Compos. Pt. A-Appl. Sci. Manuf., 35, 595 (2004)
  17. Lai YH, Khomami B, Kardos JL, Polym. Compos., 18, 367 (1997)
  18. Luce TL, Advani SG, Howard JG, Parnas RS, Polym. Compos., 16, 446 (1995)
  19. Luo Y, Verpoest I, Polym. Compos., 20, 179 (1999)
  20. Mathur R, Heider D, Hoffmann C, Gillespie JW, Advani SG, Fink BK, Polym. Compos., 22, 477 (2001)
  21. Mogavero J, Advani SG, Polym. Compos., 18, 649 (1997)
  22. Parnas RS, Salem AJ, Polym. Compos., 14, 383 (1993)
  23. DeParseval Y, Pillai KM, Advani SG, Transp. Porous Media, 27(3), 243 (1997)
  24. Seong DG, Chung K, Kang TJ, Youn JR, Polym. Polym. Compos., 10, 493 (2002)
  25. Weitzenbock JR, Shenoi RA, Wilson PA, Compos. Pt. A-Appl. Sci. Manuf., 30, 781 (1999)
  26. Weitzenbock JR, Shenoi RA, Wilson PA, Compos. Pt. A-Appl. Sci. Manuf., 30, 797 (1999)