화학공학소재연구정보센터
Clean Technology, Vol.12, No.4, 191-197, December, 2006
초임계이산화탄소를 이용한 폴리비닐아세테이트 합성
Preparation of Poly(Vinyl Acetate) in the Presence of Supercritical Carbon Dioxide
E-mail:
초록
초임계이산화탄소 내에서의 고분자중합은 생성된 고분자와 미반응물질의 분리가 용이하며, 유기용매나 물을 매체로 사용하는 기존의 고분자합성법에서와는 달리 무독성의 CO2를 사용함으로써 폐수나 공해를 발생시키지 않는 청정공정으로 주목받고 있다. 본 연구에서는 산업적으로 다양한 용도를 가지고 있는 폴리비닐알코올 (poly(vinyl alcohol) 또는 PVA)의 제조에 필수적으로 요구되는 폴리비닐아세테이트(poly(vinyl acetate)또는 PVAc)를 초임계이산화탄소를 용매로 사용하여 세계에서 두 번째로 합성하였다. Silicone계 고분자 계면활성제와 3 가지 개시제를 이용하여 338.15 K와 34.5 MPa에서 vinyl acetate의 분산중합을 실시하고, 개시제와 계면활성제의 함량변화 및 종류에 따라 생성되는 PVAc의 수율과 분자량 변화, 반응시간이 PVAc의 수율과 분자량에 영향을 알아보았다. 반응실험 결과로 얻어진 PVAc의 Mw는 60,000 ~ 140,000 g/mol, Mn은 30,000 ~ 70,000 g/mol이며, 수율은 10 ~ 80%를 기록하였다.
Polymerization in supercritical carbon dioxide has been getting attention since it is easier to separate the remaining reactants from product polymer and since it is a cleaner process that produces neither wastewater nor air pollutants, compared to the conventional polymerization processes. In this study, poly(vinyl acetate) (PVAc) that is necessary in producing poly(vinyl alcohol) (PVA) with a lot of industrial applications was manufactured in the presence of supercritical carbon dioxide for the second time in the world. A poly(dimethylsiloxane)(PDMS)-derivative surfactant and three initiators were employed in the polymerization of vinyl acetate (VAc) at 338.15 K and 34.5 MPa. Investigation was carried out to find out the effect of the amounts and types of initiators and sufactants as well as the effect of reaction time on the yield and the molecular weight of PVAc. The weight average molecular weight (Mw) of PVAc was in the range of 60,000 ~ 140,000 g/mol, and the number average molecular weight was in the range of 30,000 ~ 70,000 g/mol. The yield of PVAc was spread over 10 ~ 80%, based on the amount of VAc monomer.
  1. Lyoo WS, Lee SG, Lee CJ, Polym.(Korea), 20(6), 1004 (1996)
  2. Marten FL, "Vinyl Alcohol Polymers", in Kroschwitz, J. I., ed., Encyclopedia of Pollymer Science and Technology, vol. 8, John Wiley and Sons, New York, 2003, pp. 399-437
  3. Toyoshima K, "Properties of Poly(vinyl alcohol0 Films", in Finch, C. A., ed., "Polyvinyl Alcohol," John Wiley and Sons, New York, 1973, pp. 339-388 (1973)
  4. Kim SG, Lee WS, Jo SM, Kim BC, Lyoo WS, Han JR, J. Korean Fiber Soc., 36(5), 354 (1999)
  5. Flory PJ, Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1953, pp. 106-161 (1953)
  6. Goosney FN, Wright D, Hamielec JD, J. Appl. Polym. Sci., 18(4), 1247 (1974)
  7. Lyoo WS, Ha WS, J. Korean Fiber Soc., 33(2), 156 (1996)
  8. Lyoo WS, Kwak JW, Choi KH, Noh SK, J. Appl. Polym. Sci., 94(6), 2356 (2004)
  9. Wu XQ, Schork FJ, J. Appl. Polym. Sci., 81(7), 1691 (2001)
  10. Gomez-Cisneros M, Trevino ME, Peralta RD, Rabelero M, Mendizabal E, Puig JE, Cesteros C, Lopez RG, Polymer, 46(9), 2900 (2005)
  11. Takuji O, Kenji K, Atsushi S, Naoto I, Polym. Int., 54, 143 (2005)
  12. Rindfleisch F, Becker R, Hergeth WD, Polym. Mater. Sci. Eng., 80, 518 (1999)
  13. Kendall JL, Canelas DA, Young JL, DeSimone JM, Chem. Rev., 99(2), 543 (1999)
  14. Shim JJ, Yates MZ, Johnston KP, Ind. Eng. Chem. Res., 38(10), 3655 (1999)
  15. Beuermann S, Buback M, Nelke D, Macromolecules, 34(19), 6637 (2001)
  16. Russum JP, Barbre ND, Jones CW, Schork FJ, J. Polym. Sci. A: Polym. Chem., 43(10), 2188 (2005)