화학공학소재연구정보센터
Polymer(Korea), Vol.31, No.2, 117-122, March, 2007
In-situ 중합법에 의한 기상성장 탄소나노섬유/폴리이미드 복합재료의 제조 및 물성
Preparation and Characterization of Vapor-Grown Carbon Nanofibers-Reinforced Polyimide Composites by in-situ Polymerization
E-mail:
초록
본 연구에서는 제자리 중합에 의해 합성된 기상성장 탄소나노섬유/폴리이미드(VGCNFs/PI) 복합재료 필름의 기계적, 전기적 특성과 열안정성을 만능재료 시험기와 체적저항기, 열중량분석기를 통해 관찰하였다. 그 결과, VGCNFs 일정량 첨가되었을 때 복합재료 필름의 인장강도가 증가한 것을 관찰할 수 있었다. VGCNFs/PI 복합재료 필름의 체적저항 값은 VGCNFs 첨가량이 증가할수록 감소하였으며, 전기적 percolation threshold는 VGCNFs 함량 1과 3 wt% 형성되었는데, 이는 복합재료 내부에서 VGCNFs 상호간 네트워크의 형성으로 인하여 전기적 경로가 만들어졌기 때문이라 판단된다. VGCNFs/PI 복합재료 필름의 열안정성은 순수한 이미드 필름보다 VGCNFs가 첨가됨에 따라 향상되었으며, 이는 충전제로 사용한 VGCNFs가 PI 수지에 잘 분산됨에 따라 복합재료의 가교화에 영향을 주어 VGCNFs/PI 복합재료 필름의 열안정성이 향상된 것으로 판단된다.
In this work, the mechanical and electrical properties, and thermal stability of vapor-grown carbon nanofibers/polyimide (VGCNFs/PI) composite film synthesized by in-situ polymerization were investigated in terms of tensile properties, volume resistivity, and thermogravimetric analysis (TGA), respectively. From the results, the addition of VGCNFs with a certain amount into polyimide led to obvious improvement in tensile strength. The volume resistivity of the films was decreased with increasing the VGCNFs content and the electrical percolation threshold appeared between 1 and 3 wt% of VGCNFs content, which was probably caused by the formation of interconnective structures among the VGCNFs in a composite system. The thermal stability of the film was higher than that of pure PI one. This result indicated that the crosslinking of VGCNFs/PI composites was enhanced by well-distribution of VGCNFs in PI resin, resulting in the increase of the thermal stability of the resulting composites.
  1. Donnet JB, Bansal RC, Carbon Fibers, 2nd Ed., Marcel Dekker, New York (1990)
  2. Fitzer E, Carbon Fibers and Their Composites, McGraw-Hill, New York (1992)
  3. Kuttel OM, Groening O, Emmenegger C, Schlapbach L, Appl. Phys. Lett., 73, 2113 (1998)
  4. Endo M, Kim YA, Ezaka M, Osada K, Yanagisawa T, Hayashi T, Terrones M, Dresselhaus MS, Nano Lett., 3, 723 (2003)
  5. Seo MK, Park SJ, Chem. Phys. Lett., 44, 395 (2004)
  6. Wang WZ, Poudel B, Wang DZ, Ren ZF, J. Am. Chem. Soc., 127(51), 18018 (2005)
  7. Kotaki M, Wang K, Toh ML, Chen L, Wong SY, He CB, Macromolecules, 39(3), 908 (2006)
  8. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS, Carbon, 39, 1287 (2001)
  9. Seo MK, Park SJ, Lee SK, J. Colloid Interface Sci., 285(1), 306 (2005)
  10. Wu X, Wang Z, Chen L, Huang X, Carbon, 42, 1965 (2004)
  11. Ghosh MK, Mittal KL, Polyimide: Fundamentals and Applications, Marcel Dekker, New York (1936)
  12. Laius LA, Polyimide: Thermally Stable Polymer, Consultants Bureau, New York (1987)
  13. Wilson D, Stenzenberger HD, Hergenrother PM, Polymides, Chapman and Hall, New York (1990)
  14. Harris FW, Polyimides, Blackie and Son, New York (1990)
  15. Ma SL, Kim YS, Lee JH, Kim JS, KIm I, Won JC, Polym.(Korea), 29(2), 204 (2005)
  16. Ohya H, Kudryavatsev VV, Semenova SI, Polyimide Membranes: Applications, Fabrications, and Properites, Kodansha, Tokyo (1996)
  17. Viswanathan H, Wang YQ, Audi AA, Allen PJ, Sherwood PMA, Chem. Mater., 13, 1647 (2001)
  18. Hill D, Lin Y, Qu LW, Kitaygorodskiy A, Connell JW, Allard LF, Sun YP, Macromolecules, 38(18), 7670 (2005)
  19. Qu LW, Lin Y, Hill DE, Zhou B, Wang W, Sun XF, Kitaygorodskiy A, Suarez M, Connell JW, Allard LF, Sun YP, Macromolecules, 37(16), 6055 (2004)
  20. Park C, Qunaies Z, Watson KA, Crooks RE, Lowther SE, Connell JW, Chem. Phys. Lett., 364, 303 (2002)
  21. Jiang LY, Leu CM, Wei KH, Adv. Mater., 16, 426 (2002)
  22. Al-Masri M, Kricheldorf HR, Fritsch D, Macromolecules, 32(23), 7853 (1999)
  23. Madhra MK, Salunke AK, Banerjee S, Prabha S, Macromol. Chem. Phys., 9, 203 (2002)
  24. Zhu BK, Xie SH, Xu ZK, Xu YY, Compos. Sci. Technol., 66, 548 (2006)
  25. Potschke P, Dudkin SM, Alig I, Polymer, 44(17), 5023 (2003)
  26. Bin YZ, Kitanaka M, Zhu D, Matsuo M, Macromolecules, 36(16), 6213 (2003)
  27. Stauffer D, Introduction to the Percolation Theory, Francis and Taylor, London (1991)
  28. Park SJ, Kim HC, Kim HY, J. Colloid Interface Sci., 395, 44 (2004)
  29. Lillehei PT, Park C, Rouse JH, Siochi EJ, Nano Lett., 2, 827 (2002)
  30. Park SJ, Cho KS, Kim SH, J. Colloid Interface Sci., 272(2), 384 (2004)