화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.24, No.2, 239-245, March, 2007
Micellar enhanced ultrafiltration and activated carbon fibre hybrid processes for copper removal from wastewater
E-mail:
Several series of experiments were conducted to investigate copper removal from artificial suspension in micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) hybrid processes. Sodium dodecyl sulphate (SDS) was used as a surfactant. Copper removal increased with the increase of molar ratio of copper to SDS, operating retentate pressure and initial permeate flux. Permeate flux decreased with the increase of molar ratio of copper to SDS. Specific and relative fluxes declined, respectively, with the increase of retentate pressure and initial permeate flux. Based on removal efficiency and permeate flux, initial permeate flux of 1.05 m3/m2/day, copper to SDS molar ratio of 1 : 30 (9.44 mM of SDS), and operating retentate pressure of 1.4 bar were found to be the optimum operating parameters for 0.5 mM or less initial copper concentration. Average copper removal at the optimised condition was 98% and the corresponding permeate copper concentration was less than 1 mg/L. Adsorptive capacity of activated carbon fibre (ACF) for SDS was 170 mg/g. Langmuir isotherm equation gives a better fit with the experimental results compared to the Freundlich isotherm equation. Overall SDS removal efficiency of two sets of ACF unit in series was 85%.
  1. Madoni P, Davoli D, Gorbi G, Vescovi L, Water Res., 30, 135 (1996)
  2. Jegatheesan V, Lee SH, Visvanathan C, Shu L, Marzella M, Environ. Eng. Res., 4(4), 283 (1999)
  3. Tung CC, Yang YM, Chang CH, Maa JR, Waste Manage., 22, 695 (2002)
  4. Baek K, Cho HJ, Yang JW, J. Hazard. Mater., B99, 303 (2003)
  5. Bohdziewicz J, Bodzek M, Wasik E, Desalination, 121(2), 139 (1999)
  6. Purkait MK, Gupta SD, De S, J. Colloid Interface Sci., 207, 459 (2004)
  7. Chai XJ, Chen GH, Yue PL, Mi YL, J. Membr. Sci., 123(2), 235 (1997)
  8. Baek K, Yang JW, J. Hazard. Mater., B108, 119 (2004)
  9. Gzara L, Dhahbi M, Desalination, 137(1-3), 241 (2001)
  10. Liao BQ, Bagley DM, Kraemer HE, Leppard GG, Liss SN, Water Environ. Res., 76, 425 (2004)
  11. Juang RS, Xu YY, Chen CL, J. Membr. Sci., 218(1-2), 257 (2003)
  12. Park SJ, Yoon HH, Song SK, Korean J. Chem. Eng., 14(4), 233 (1997)
  13. Gander M, Jefferson B, Judd S, Sep. Purif. Technol., 18(2), 119 (2000)
  14. Nagakoa H, Ueda S, Miya A, Water Sci. Technol., 38(4), 497 (1998)
  15. Shon HK, Vigneswaran S, Kim IS, Cho J, Ngo HH, J. Membr. Sci., 234(1-2), 111 (2004)
  16. Jarusutthirak C, Amy G, Water Sci. Technol., 43, 225 (2001)
  17. Koyuncu I, Kural E, Topacik D, Water Sci. Technol., 43, 233 (2001)
  18. Stephan W, Noble RD, Koval CA, J. Membr. Sci., 99(3), 259 (1995)
  19. Kweon JH, Lawler DF, Water Res., 38, 4164 (2004)
  20. Gagliardo P, Adham S, Trusell R, Water Sci. Technol., 43(10), 219 (2001)
  21. Shin H, Kang S, Water Sci. Technol., 47, 139 (2002)
  22. Bouhabila EH, Ben Aim R, Buisson H, Desalination, 118(1-3), 315 (1998)
  23. Gan Q, Resour. Conserv., 27, 14 (1999)
  24. Kim JH, Wu SH, Pendleton P, Korean J. Chem. Eng., 22(5), 705 (2005)
  25. Baek K, Yang JW, Desalination, 167(1-3), 101 (2004)
  26. Ghosh G, Bhattacharya PK, Chem. Eng. J., 119(1), 45 (2006)
  27. Lee SH, Environ. Eng. Res., 6(4), 191 (2001)
  28. Lee SH, Jang JH, Environ. Eng. Res., 18(2), 137 (2004)