화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.50, No.1-2, 303-319, 2007
A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate
A numerical investigation of the evaporation process of n-heptane and water liquid droplets impinging onto a hot substrate is presented. Three different temperatures are investigated, covering flow regimes below and above Leidenfrost temperature. The Navier-Stokes equations expressing the flow distribution of the liquid and gas phases, coupled with the Volume of Fluid Method (VOF) for tracking the liquid-gas interface, are solved numerically using the finite volume methodology. Both two-dimensional axisymmetric and fully three-dimensional domains are utilized. An evaporation model coupled with the VOF methodology predicts the vapor blanket height between the evaporating droplet and the substrate, for cases with substrate temperature above the Leidenfrost point, and the formation of vapor bubbles in the region of nucleate boiling regime. The results are compared with available experimental data indicating the outcome of the impingement and the droplet shape during the impingement process, while additional information for the droplet evaporation rate and the temperature and vapor concentration fields is provided by the computational model. (c) 2006 Elsevier Ltd. All rights reserved.