Journal of Chemical Engineering of Japan, Vol.39, No.10, 1115-1118, 2006
Role of mass-transfer rate and surface inertia on solitary wave trains at liquid surface
We report several findings about solitary wave trains in a liquid surface, which is produced by the Marangoni instability. The wave trains were induced by adsorption and absorption of the volatile species into another miscible liquid. Although the present system has been investigated focusing on the interfacial fluid dynamics in detail, our special interest in this paper is a mapping of the wave-mode on a certain diagram. Firs( of all, we reported a kind of conservation law between the number of wave crests and the traveling speed. As the next, we mentioned that a liquid layer composed of a volatile species was formed on the less-volatile liquid. On the basis of these results, we successfully performed the mode-mapping on a diagram, the abscissa and ordinate of which represent the mass-transfer rate and the thickness of the layer, respectively. Both axes, respectively, corresponded to the strength of the driving force and the inertia against the movement.