Journal of Physical Chemistry A, Vol.110, No.50, 13349-13354, 2006
Singlet-triplet splittings and their relevance to the spin-dependent exciton formation in light-emitting polymers: An EOM/CCSD study
By employing the coupled-cluster equation of motion method (EOM/CCSD) for excited-state structures, we have investigated the structure dependence of the singlet and triplet exciton splittings, through extensive calculations for polythiophene (PT), poly(3,4-ethylenedioxythiophene) (PEDOT), poly(thienylenevinylene) (PTV), polyparaphenylene vinylene (PPV), MEHPPV, polyparaphenylene ethylene (PPE), polyfluorene (PFO), and ladder-type polyparaphenylene (mLPPP). The results for the polymer are extrapolated through computations for the oligomers with increasing length. Recent investigations have been quite controversial about whether the internal quantum efficiency of electroluminescence could be higher than the 25% spin statistics limit or not in polymeric materials. Using a simple relationship between the exciton formation rate and the excitation energy level, we have discussed the material-dependent ratios of singlet and triplet exciton formation, which are in good agreement with the magnetic-field resonance detected transient spectroscopy measurement by Wohlgenannt et al. for a series of electronic polymers. This provides another piece of evidence to support the view that the internal quantum efficiency for conjugated polymers can exceed the 25% limit.