화학공학소재연구정보센터
Langmuir, Vol.22, No.26, 11241-11244, 2006
Surface stress changes induced by the conformational change of proteins
A potential binding assay based on conformational-change-induced micromechanical motion is described. Calmodulin was used to modify a microcantilever (MCL) by a self-assembled layer-by-layer approach. The results showed that the modified MCL bent when the proteins changed their conformation upon binding with Ca2+. The cantilever deflection amplitudes were different under different ionic strengths, indicating different degrees of conformational change of the proteins in these conditions. On the contrary, cantilevers modified by proteins, such as hemoglobin and myoglobin, that do not change conformations upon binding with analytes do not cause the cantilever deflection. These results suggest that the conformational changes of proteins may be used to develop cantilever biosensors, and the MCL system has potential for use in label-free, protein-analyte screening applications.