화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.111, No.5, 925-931, 2007
Uptake measurements of ethanol on ice surfaces and on supercooled aqueous solutions doped with nitric acid between 213 and 243 k
Uptake of ethanol either on pure frozen ice surfaces or supercooled solutions doped with HNO3 (0.63 and 2.49 wt %) has been investigated using a coated wall flow tube coupled to a mass spectrometric detection. The experiments were conducted over the temperature range of 213-243 K. Uptake of ethanol on these surfaces was always found to be totally reversible whatever were the experimental conditions. The number of ethanol molecules adsorbed per surface unit was conventionally plotted as a function of ethanol concentration in the gas phase and subsequently analyzed using Langmuir's model. The amount of ethanol molecules taken up on nitric acid doped-ice surfaces was found to increase largely with increasing nitric acid concentrations. For example at 223 K, and for an ethanol gas-phase concentration of 1 x 10(13) molecules cm(3), the number of adsorbed molecules are (in units of molecules cm(-2)): similar to 1.3 x 10(14) on pure ice; similar to 1.4 x 10(15) on ice doped with HNO3 0.63 wt %; similar to 7.5 x 10(15) on ice doped with HNO3, 2.49 wt %, i.e. 60 times larger than on pure ice. Since, according to the shape of the isotherms, the adsorption did not proceed beyond monolayer coverage, the enormous increase of ethanol uptake was explained by considering its dissolution in either a supercooled liquid layer (T < 230 K) or a liquid solution (T > 230 K). The formation of both was indeed favored by the presence of the HNO3. Our experimental results suggest that the amount of ethanol dissolved in such supercooled solutions follows Henry's law and that the Henry's law constants at low temperatures, i.e., 223-243 K, can be estimated by extrapolation from higher temperatures. Such supercooled solutions which exist in the troposphere either in deep convective clouds or in mixed clouds for temperature above 233 K, might be responsible for the scavenging of large amounts of soluble species, such as nitric and sulfuric acids, oxygenated VOCs including alcohols, carboxylic acids, and formaldehyde.