화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.129, No.4, 905-913, 2007
A DFT study on the mechanism of phosphodiester cleavage mediated by monozinc complexes
Density functional theory (DFT), Tao-Perdew-Staroverov-Scuseria (TPSS), is employed to study the reaction mechanism for the zinc-mediated phosphodiester cleavage reaction. The calculations indicate a general base catalysis mechanism. The flexibility of Zn(II) ion's coordination number (5 and 6) as well as the formation of hydrogen bonds between the coordinating water and the ester are responsible for the trapping (namely, coordinating to the Zn complexes) of the phosphodiester. The hydrogen bonds, between the water, the ester, and the nitrogen-ligand, tris(6-amino-2-pyridylmethyl)amine, not only stabilize the key five-coordinated phosphorus intermediates with a trigonal pyramidal PO5 unit but also lower the energy barriers for the proton transfer within the complexes by gaining stronger solvation energies.