Journal of the American Chemical Society, Vol.129, No.5, 1190-1195, 2007
Diastereo- and enantioselective synthesis of nitroso Diels-Alder-type bicycloketones using dienamine: Mechanistic insight into sequential nitroso aldol/Michael reaction and application for optically pure 1-amino-3,4-diol synthesis
This article presents complete diastereo- and highly enantioselective synthesis of nitroso Diels-Alder-type bicycloketones using dienamine. With the hydrogen bonding of two hydroxyls in the bulky binaphthol 1c, high enantioselectivities and complete diastereoselectivity are realized in 2-oxa-3-aza-bicycloketone synthesis. On the other hand, alpha,beta-unsaturated ketone can be employed as diene precursor, utilizing readily available tetrazole catalyst 3b, to provide the 3-oxa-2-aza-bicycloketones in moderate yields with complete enantioselectivities. Investigation into the reaction utilizing 2-morpholino-4,4-diphenylcyclohexadiene 2d clearly indicated that cyclization with the bulky binaphthol 1c is involved in the sequential process, the N-nitroso aldol reaction, followed by Michael addition. In addition, optically pure 1-amino-3,4-diol is synthesized from 2-oxa-3-aza-bicycloketones. Use of p-phenoxynitrosobenzene allows access to protected amino diol via cleavage of the N-Ph bond.