화학공학소재연구정보센터
Langmuir, Vol.23, No.2, 765-770, 2007
Synthesis, assembly, and optical properties of shape- and phase-controlled ZnSe nanostructures
Shape-, size-, and phase-controlled ZnSe nanostructures were synthesized by thermolysis of zinc acetate and selenourea using liganding solvents of octadecylamine (ODA) and trioctylphosphineoxide (TOPO) at different molar ratios. Materials synthesized in pure ODA resulted in uniform ultranarrow nanorods and nanowires of 1.3 nm in diameter. Morphological change from nanowire to spherical particle of larger diameter occurs with increasing TOPO/ODA ratio. Variation of the TOPO content in the mixed solvent also allows control of the crystallographic phase of ZnSe (wurtzite or zinc blende). The conditions and mechanisms of shape and phase control are discussed. Ultra-high-density networks of the ordered wires are achieved using the Langmuir-Blodgett technique in a single step as an essential stage on the route to ultra-high-density semiconductor nanocircuit fabrication.