Langmuir, Vol.23, No.3, 1530-1542, 2007
Modification of indium-tin oxide electrodes with thiophene copolymer thin films: Optimizing electron transfer to solution probe molecules
We describe the modification of indium-tin oxide (ITO) electrodes via the chemisorption and electropolymerization of 6-{2,3-dihydrothieno[3,4-b]-1.4-dioxyn-2-yl methoxy}hexanoic acid (EDOTCA) and the electrochemical co-polymerization of 3,4-ethylenedioxythiophene (EDOT) and EDOTCA to form ultrathin films that optimize electron-transfer rates to solution probe molecules. ITO electrodes were first activated using brief exposure to strong haloacids, to remove the top similar to 8 nm of the electrode surface, followed by immediate immersion into a 50:50 EDOT/EDOTCA comonomer solution. Potential step electrodeposition for brief deposition times was used to grow copolymer films of thickness 10-100 nm. The composition of these copolymer films was characterized by solution depletion studies of the monomers and atomic force microscopy (AFM), X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy (reflection-absorption infrared spectroscopy (RAIRS)) of the product films. The spectroscopic data suggest that the composition of the copolymer approaches 80% EDOTCA when electropolymerization occurs from concentrated (10 mM) solutions. AFM characterization shows that electrodeposited poly(EDOT)/poly(EDOTCA) (PEDOT/PEDOTCA) films are quite smooth, with texturing on the nanometer scale. RAIRS studies indicate that these films consist of a combination of EDOTCA units with noninteracting -COOH groups and adjacent hydrogen-bonded -COOH groups. The EDOTCA-containing polymer chains appear to grow as columnar clusters from specific regions, oriented nearly vertically to the substrate plane. As they grow, these columnar clusters overlap to form a nearly continuous redox active polymer film. ITO activation and formation of these copolymer films enhances the electroactive fraction of the electrode surface relative to a nonactivated, unmodified "blocked" ITO electrode. Outer-sphere solution redox probes (dimethylferrocene) give standard rate coefficients, k(S) >= 0.4 cm center dot s(-1), at 10 nm thick copolymer films of PEDOT/PEDOTCA, which is 3 orders of magnitude greater than that on the unmodified ITO surface and approaches the values for k(S) seen on clean gold surfaces.