화학공학소재연구정보센터
Langmuir, Vol.23, No.3, 1569-1576, 2007
Formation of hybrid 2D polymer-metal microobjects
This paper describes a fabrication strategy based on polymer brushes (20-150 nm thick) and soft lithographic techniques, for creating hydrophobic, cross-linked, laterally patterned polymer films. The hydrophobicity of the resulting micrometer-scale "quasi-2D" objects is shown to allow the polymer to act as an etch resist. By adjusting the etching time, we demonstrate that underetching of the gold from underneath the edges of the laterally patterned films can be used to create free-standing polymer-gold hybrid structures. These structures retain their structural integrity when lifted wholly or partially from the substrate and can hence be imaged in suspension. Characterization of the quasi-2D objects was carried out using atomic force microscopy (AFM), ellipsometry, optical microscopy, and Fourier transform infrared spectroscopy (FTIR). A continuous film, containing embedded polymer-gold objects, can be lifted, folded, and re-deposited onto a substrate without damaging the conductivity of the embedded metallic objects.