Journal of Power Sources, Vol.164, No.1, 336-343, 2007
Simulation of a hydrogen production and purification system for a PEM fuel-cell using bioethanol as raw material
A process to produce "fuel-cell grade" hydrogen from ethanol steam reforming is analyzed from a thermodynamic point of view. The hydrogen purification process consists of WGS and COPROX reactors. Equations to evaluate the efficiency of the system, including the fuel cell, are presented. A heat exchange network is proposed in order to improve the exploitation of the available power. The effect of key variables such as the reformer temperature and the ethanol/water molar feed ratio on the fuel-cell efficiency is discussed. Results show that it is feasible to carry out the energy integration of the hydrogen catalytic production and purification-PEM fuel-cell system, using ethanol as raw material. The technology of "fuel-cell grade" hydrogen production using ethanol as raw material is a very attractive alternative to those technologies based in fossil fuels. (c) 2006 Elsevier B.V. All rights reserved.