Langmuir, Vol.23, No.4, 2052-2057, 2007
Hybrid protein-lipid patterns from aluminum templates
An aqueous aluminum liftoff process suitable for fabrication of hybrid patterns of protein and supported lipid membrane on silica surfaces is described. Patterned aluminum thin films, which can be produced by conventional optical or electron beam lithography, are employed as sacrificial protecting layers to define the geometry of the protein-lipid patterns. The aluminum is lifted off in a mildly basic aqueous solution, which preserves the integrity of bound protein layers. The newly exposed substrate can then be filled with supported membrane by exposure to an aqueous vesicle suspension. The final substrate consists of patterned protein and lipid membranes with spatial resolution determined by aluminum patterns, down to 200 nm line widths in this case. Inorganic surfaces were characterized by atomic force microscopy and X-ray photoelectron spectroscopy while supported bilayers and protein patterns were characterized by epifluorescence microscopy.