Langmuir, Vol.23, No.4, 2103-2109, 2007
Influence of a reduced mobility layer on the structural relaxation dynamics of aluminum capped ultrathin films of poly(ethylene terephthalate)
The structural dynamics of ultrathin polymer films of poly(ethylene terephthalate) capped between aluminum electrodes have been investigated by dielectric relaxation spectroscopy. A deviation from bulk behavior, appearing as an increase of the relaxation time at a fixed temperature, is observed for films of thickness below 35 nm. The slowing down acts as a constant shift factor independent from the temperature, and the fragility is constant. The interfacial energy between aluminum and poly(ethylene terephthalate) is calculated to be 3 mJ/m(2), confirming a strong interaction between polymer and substrate, which leads to the presence of a layer characterized by a reduced mobility at their interfaces. We proposed a mathematical schematization of a multylayer model that allowed qualitative reproduction of the observed thickness dependences of the static and dynamic properties. In terms of such a model, the upper limit for the thickness of the reduced mobility layer was estimated as 20 nm. The conditions to extend the proposed model to different observables are finally suggested.