Langmuir, Vol.23, No.5, 2755-2760, 2007
Molecular recognition forces between immunoglobulin G and a surface protein adhesin on living Staphylococcus aureus
We report AFM measurements of binding events between immunoglobulin G (IgG) and protein A (PA) on the surface of live Staphylococcus aureus bacteria. The experiments were carried out with IgG molecules tethered via CM-amylose linkers to thiol SAMs on gold-coated AFM tips. For comparison, a model system consisting of protein A molecules tethered to thiol SAMs on gold-coated silicon substrates was also investigated. Histograms of binding forces for the PA-IgG bond showed comparable rupture forces of 59 and 64 pN for the model system and live bacteria, respectively. We suggest that linker molecules with a length comparable to the AFM tip radius should make it possible to detect specific binding events on the surface of live bacteria with a lateral resolution of a few tens of nanometers. Furthermore, because S. aureus is an important human pathogen, especially methicillin-resistant strains (MRSA), it is possible that additional virulence factors beyond PA can be probed using this technique.