화학공학소재연구정보센터
Macromolecular Research, Vol.15, No.3, 211-215, April, 2007
Theoretical Optical Waveguide Investigation of Self-Organized Polymer Thin Film Nanostructures with Nanoparticle Incorporation
E-mail:
Hybrid thin film nanostructures composed of metal nanoparticles (NPs) and self-assembled polymer films with different spatial distributions of NPs were analyzed by optical waveguide spectroscopy (OWS). Specifically, the dielectric constants were calculated using effective medium theory for the incorporation of 1 vol% Au NP into the block copolymer (BCP) films having a cylindrical nanodomain morphology. Three cases were considered: uniform distribution of NPs in the film; selective distribution of NPs only in the cylindrical domains; and segregation of NPs to the center of the cylindrical domains. The optical waveguide spectra derived from the calculated dielectric constants demonstrate the feasibility of experimentally distinguishing the composite nanostructures with different inner morphologies in the hybrid metal NP-BCP nanostructures, by the measurement of the dielectric constants using OWS.
  1. Hamley IW, The physics of Block Copolymers, Oxford University Press, New York (1998)
  2. Fredrickson GH, Bates FS, Annu. Rev. Mater. Sci., 26, 501 (1996)
  3. Lazzari M, Lopez-Quintela MA, Adv. Mater., 15, 1583 (2003)
  4. Hamley IW, Angew. Chem. Int. Ed., 42, 1692 (2003)
  5. Urbas AM, Maldovan M, DeRege P, Thomas EL, Adv. Mater., 14, 1850 (2002)
  6. Nam SH, Kang JW, Kim JJ, Macromol. Res., 14(1), 114 (2006)
  7. Yoon KB, Macromol. Res., 12(3), 290 (2004)
  8. Vandijk MA, Vandenborg R, Macromolecules, 28(20), 6773 (1995)
  9. Wang Y, Song R, Li YS, Shen JS, Surf. Sci., 530, 136 (2003)
  10. Sun Z, Kim DH, Wolkenhauer M, Bumbu GG, Knoll W, Gutmann JS, Chem. Phys. Chem., 7, 370 (2006)
  11. Kim DH, Lau KHA, Joo W, Peng J, Jeong U, Hawker CJ, Kim JK, Russell TP, Knoll W, J. Phys. Chem. B, 110(31), 15381 (2006)
  12. Kim DH, Lau KHA, Robertson JWF, Lee OJ, Jeong U, Lee JI, Hawker CJ, Russell TP, Kim JK, Knoll W, Adv. Mater., 17, 2442 (2005)
  13. Aspnes DE, Thin Solid Films, 89, 249 (1982)
  14. Granqvist CG, Hunderi O, Phys. Rev. B, 18, 2897 (1978)
  15. Eustis S, El-Sayed MA, Chem. Soc. Rev., 35, 209 (2006)
  16. Franke ME, Koplin TJ, Simon U, Small, 2, 36 (2006)
  17. Kim DH, Jia X, Lin Z, Guarini K, Russell TP, Adv. Mater., 16, 702 (2004)
  18. Berret JF, Schonbeck N, Gazeau F, El Kharrat D, Sandre O, Vacher A, Airiau M, J. Am. Chem. Soc., 128(5), 1755 (2006)
  19. Li X, Goring P, Pippel E, Steinhart M, Kim DH, Knoll W, Macromol. Rapid Commun., 26, 1173 (2005)
  20. Horiuchi S, Fujita T, Hayakawa T, Nakao Y, Langmuir, 19(7), 2963 (2003)
  21. Granqvist CG, Hunderi O, Phys. Rev. B, 16, 3513 (1977)
  22. Jeong U, Ryu DY, Kho DH, Kim JK, Goldbach JT, Kim DH, Russell TP, Adv. Mater., 16, 533 (2004)
  23. Knoll W, Annu. Rev. Phys. Chem., 49, 569 (1998)
  24. Hornyak GL, Patrissi CJ, Martin CR, J. Phys. Chem. B, 101(9), 1548 (1997)
  25. Maxwell-Garnett JC, Philos. Trans. R. Soc. London, 203, 385 (1904)
  26. Maxwell-Garnett JC, Philos. Trans. R. Soc. London, 205, 237 (1906)
  27. Garcia-Vidal FJ, Pitarke JM, Pendry JB, Phys. Rev. Lett., 78, 4289 (1997)
  28. Bruggeman DAG, Ann. Phys. (Leipzig), 24, 636 (1935)
  29. Schulz LG, J. Opt. Soc. Am., 44, 357 (1954)
  30. Schulz LG, Tangherlini FR, J. Opt. Soc. Am., 44, 362 (1954)
  31. Maldovan M, Bockstaller MR, Thomas EL, Carter WC, Appl. Phys. B-Lasers Opt., 76, 877 (2003)
  32. Martin OJF, Piller NB, Phys. Rev. E, 58, 3909 (1998)