Korean Chemical Engineering Research, Vol.45, No.2, 183-189, April, 2007
유전체 장벽 방전을 이용한 원소수은의 산화특성
Oxidation of Elemental Mercury using Dielectric Barrier Discharge Process
E-mail:
초록
대표적인 수은 발생원인 도시폐기물 소각로와 화력 발전소 등지에서 배출되는 원소수은(Hg0)은 산화수은(Hg2+) 및 입자상 수은(Hgp)과 달리 기존의 대기오염 방지시설로 제거하기 난해한 편이다. 그로 인해 원소수은의 효율적 제거에 대한 많은 연구가 진행중이며, 이 연구에서는 저온 플라즈마(non-thermal plasma)의 하나인 유전체 장벽 방전(dielectric barrier discharge: DBD) 공정을 이용하여 원소수은 산화에 관한 실험을 수행하였다. 실험 결과, 공기 상의 DBD 공정에서는 생성되는 산소 원자와 오존에 의해서 원소수은이 산화수은으로 전환됨을 알 수 있었으며, 원소수은의 산화율을 결정하는 주된 변수는 반응기에 주입되는 에너지 밀도임을 확인할 수 있었다.
We have investigated the oxidation of gas phase elemental mercury using dielectric barrier discharge (DBD). In the DBD process, active species such as O3, OH, O and HO2 are generated by collisions between electrons and gas molecules. Search active species convert elemental mercury into mercury oxide which is deposited into the wall of DBD reactor because of its low vapor pressure. The oxidation efficiency of elemental mercury has been decreased from 60 to 30% by increasing the initial concentration of the elemental mercury from 72 to 655 μg/Nm3. The gas retention time at the DBD reactor has showed the little effect on the oxidation efficiency. The more oxygen concentration has induced the more oxidation of elemental mercury, whereas there has been no appreciable oxidation within pure N2 discharge. It has indicated that oxygen atom and ozone, generated in air condition determine the oxidation of elemental mercury.
- Annau Z, Cuom V, Toxicology, 49, 219 (1998)
- Carpi A, Water Air Soil Pollut., 98, 241 (1997)
- Schroeder WH, Munthe J, Atmos. Environ., 32(5), 809 (1998)
- Otani Y, Kanaoka C, Usui C, Matsui S, Emi H, Environ. Sci. Technol., 20, 735 (1986)
- Lee SJ, Seo YC, Jurng JS, Lee TG, Atmos. Environ., 38, 4887 (2004)
- Lee TG, Biswas P, Hedrick E, Ind. Eng. Chem. Res., 43(6), 1411 (2004)
- Granite EJ, Pennline HW, Ind. Eng. Chem. Res., 41(22), 5470 (2002)
- Yoon YI, Choi WK, Lee SH, Lee HK, Prospect. Ind. Chem., 8(1), 12 (2005)
- Clements JS, Mizuno A, Finney WC, Davis RH, IEEE Trans. Ind. Appl., 25(1), 62 (1989)
- Urashima K, Chang JS, IEEE. Trans. Dielec. Elec. Insul., 7(5), 602 (2001)
- Lee YH, Jung WS, Choi YR, Oh JS, Jang SD, Son YG, Cho MH, Nam kung W, Koh DJ, Mok YS, Chung JW, Environ. Sci. Technol., 37(7), 2563 (2003)
- Futamura S, Einaga H, Zhang A, IEEE Trans. Ind. Appl., 37, 978 (2001)
- Liang X, Looy PC, Jayaram S, Berezin AAMS, Chang JS, IEEE Trans. Ind. Appl., 38(1), 69 (2002)
- Masuda S, Wu Y, Urabe T, Ono Y, Proc. Of 3rd Int. Conf. on Electrostatic Precipitation, Abano, Italy, October 667-676 (1987)
- Lee YH, Chung JW, Choi YR, Chung JS, Cho MH, Namkung W, Plasma Chem. Plasma Process., 24(2), 137 (2004)
- Morita M, Yoshinaga J, Edmonds JS, Pure Appl. Chem., 70(8), 1585 (1998)
- Pitoniak E, Wu CY, Mazyck DW, Powers KW, Sigmund W, Environ. Sci. Technol., 39(5), 1269 (2005)
- Okabe H, Photochemistry of Small Molecules, A Wiley-Interscience Publication (1978)
- Rice RG, Netzer A, Handbook of Ozone Technology and applications. Vol. 1 ANN ARBOR SCIENCE (1982)
- Pal B, Ariya PA, Phys. Chem. Chem. Phys., 6, 572 (2004)
- Lin CJ, Pehkonen SO, Atmos. Environ., 33, 2067 (1999)
- Calvert JG, Lindberg SE, Atmos. Environ., 39, 3355 (2005)
- Thomsen EL, Egsgaard H, Chem. Phys. Lett., 125(4), 378 (1986)
- Sommar J, Gardfeldt K, Stromberg D, Feng X, Atmos. Environ., 35, 3049 (2001)
- Pal B, Ariya PA, Environ. Sci. Technol., 38(12), 5555 (2004)